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Abstract
Thermal fluctuations in time-dependent quantum processes are treated by
a constant-temperature generalization of Wigner’s formulation of quantum
mechanics in phase space. To this end, quantum Nosè–Hoover dynamics is
defined by generalizing the Moyal bracket. Computational applications of the
formalism, together with further theoretical developments, are discussed.

PACS numbers: 03.65.−w, 05.30.−d, 02.70.−c

1. Introduction

In recent years it has become clear that the field of open quantum systems [1] and quantum
information [2] are intertwined: advancement in the theoretical and numerical techniques to
study open systems might as well lead to novel schemes to manipulate quantum information.
Typically, the growing field of cold quantum gases [3] and optical lattices [4], which is deeply
related to the field of quantum information, calls for novel simulation methods [5].

In this paper, we generalize the Moyal bracket within the Wigner’s formulation of quantum
mechanics in phase space. We show how such a generalized bracket can be used to introduce
the control of temperature in quantum dynamics in phase space. This is realized by re-
formulating into quantum phase space the well-known dynamics of Nosè–Hoover, which is
widely used in the field of classical molecular dynamics simulations, by means of a Nosè–
Moyal bracket. We also illustrate by means of a numerical calculation on a model system
how the Nosè–Moyal bracket can be used to study dissipation effects in quantum dynamics,
so that one effectively addresses open systems by means of a deterministic evolution. The
work presented here is related to previous formulations of thermostatted dynamics both in the
Schrödinger picture [6] and in the coherent state formulation of quantum dynamics [7].

This paper is organized as follows. In section 2 we briefly sketch Wigner’s formulation of
quantum mechanics in a form suitable to further generalizations. In section 3 we generalized
the Moyal bracket and, by means of it, introduce non-unitary evolution for the Wigner
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function. In section 4 we introduce Nosè equations of motion in quantum phase space so
as to define a Nosè–Wigner dynamics. For computational purposes, we take a quantum-
classical approximation of the Nosè–Wigner dynamics in section 5 and show how to construct
a stationary Wigner function in terms of even powers of h̄. Details of the derivation are given in
the appendix. In section 6 we apply the Nosè–Wigner dynamics to simulate the deterministic
cooling of a system of phonons, which might represent the fluctuation of a boson gas. Our
conclusion and comments are given in section 7.

2. Wigner’s quantum statistical mechanics

Quantum statistical averages of generic observables χ̂ can be calculated my means of the
density matrix operator ρ̂ as

〈χ̂〉(t) = Tr{χ̂ ρ̂(t)}. (1)

Time-dependent effects are addressed by solving the equation of motion for the density matrix
[8]

∂ρ̂

∂t
= − i

h̄
[Ĥ , ρ̂], (2)

where Ĥ = p̂2/(2m)+V̂ (r̂) is the Hamiltonian operator of the system, r̂ and p̂ are the position
and momentum operators respectively, and m is the particle mass.

Quantum mechanics can be represented in phase space by means of the Wigner function
fW(r, p) [9, 10], which is defined as

fW(r, p) = 1

(2πh̄)N

∫
dNξ exp

[
i

h̄
p · ξ

] 〈
r − ξ

2
|ρ̂|r +

ξ

2

〉
(3)

= 1

(2πh̄)N
W [ρ̂] , (4)

where N is the number of particles in the system, and we have adopted a compact notation for
the coordinates so that, for example, ξ ≡ (ξ1, ξ2, . . . , ξN). The right-hand-side of equation (4)
defines the operator W which realizes the Wigner transform. In terms of the latter the Wigner
transform of the generic observable χ̂ is defined as

χW(r, p) = W [χ̂ ] . (5)

Therefore, quantum averages (1) are expressed in quantum (Wigner) phase space as

Tr {ρ̂(t)χ̂} ≡
∫

dNrdNpfW(r, p; t)χ(r, p). (6)

In order to define the time evolution of the Wigner function, one has to consider the Wigner
transform of the commutator appearing in equation (2). To this end, consider two generic
operators χ̂1 and χ̂2, together with their corresponding Wigner transforms W[χ̂1] = χ1

W(r, p)

and W[χ̂2] = χ2
W(r, p). The Wigner transform of the product χ̂1 · χ̂2 is known to be [11]

W{χ̂1 · χ̂2} ≡ χ1
W(r, p) e(h̄/2i)�χ2

W(r, p), (7)

where � is an operator acting as the negative of the Poisson bracket; e.g., for two arbitrary
phase space functions, a and b, it is defined as

a(r, p)�b(r, p) = −{a, b} = −∂a

∂r

∂b

∂p
+

∂a

∂p

∂b

∂r
, (8)

where {a, b} in the right-hand-side denotes the Poisson bracket.
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Then, upon taking the Wigner transform of equation (2), one obtains the quantum phase
space equation of motion

∂

∂t
fW (r, p, t) = − i

h̄
(HW e(h̄/2i)�fW (t) − fW(t) e(h̄/2i)�HW)

= − i

h̄
{HW, fW(t)}M , (9)

where the right-hand-side defines the Moyal bracket [12]. The formal solution of equation (9)
can be compactly written as

fW(r, p, t) = exp

[
− it

h̄
{HW, . . .}M

]
fW(r, p, 0). (10)

The right-hand-side of equation (10) defines the quantum propagator in phase space
exp[(it/h̄){HW, . . .}M], which is defined in terms of its series expansion. Equivalently, time
averages can be calculated by considering the Wigner function at the initial time and evolving
Wigner transformed operators according to

χW(r, p, t) = exp

[
it

h̄
{HW, . . .}M

]
χW(r, p, 0). (11)

From the above equation one sees that the time evolution is unitary.

3. Generalized Moyal bracket

It has been noted some time ago [13] that the Moyal bracket defines a non-canonical dynamics
in quantum phase space. Here we want to show how the mathematical structure underlying
such a bracket is more general. To this end, let us introduce the canonical antisymmetric
matrix in block form

Bc =
[

0 1
−1 0

]
. (12)

It is well known that Poisson brackets in phase space can be written in terms of Bc; accordingly
the � operator can be written as

� = −
2N∑

i,j=1

←−
∂

∂xi

Bc
ij

−→
∂

∂xj

, (13)

where we have used a compact notation for the phase space point: x = (r, p). The
antisymmetric matrix Bc can be used to re-write the Moyal bracket. However, in the present
context, we want to consider the modification of the equations of motion in quantum phase
space arising from the introduction of a general antisymmetric matrix [14, 17], Bij = −Bji ,
which is no longer restricted to the canonical form of equation (12). In terms of B a generalized
Moyal bracket can be introduced as{

χ1
W, χ2

W

}
M = χ1

W e(ih̄/2)
←−
∂i Bij

−→
∂j χ2

W − χ2
W e

ih̄
2
←−
∂i Bij

−→
∂j χ1

W, (14)

where the summation over repeated indices is understood.
Generalized equations of motion for Wigner transformed operators can now be written as

∂tχW (x, t) = i

h̄

[
HW e

ih̄
2
←−
∂i Bij

−→
∂j χW − χW e

ih̄
2
←−
∂i Bij

−→
∂j HW

]
= i

h̄

[
HW e

ih̄
2
←−
∂i Bij

−→
∂j − HW e− ih̄

2
←−
∂i Bij

−→
∂j
]
χW, (15)

3
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where we have used the antisymmetry of B. We can now define the generalized Moyal
propagator

exp

{
it

h̄
M
}

= exp

{
it

h̄

[
HW e

ih̄
2
←−
∂i Bij

−→
∂j − HW e− ih̄

2
←−
∂i Bij

−→
∂j
]}

, (16)

and write quantum averages in phase space as

〈χW(t)〉 =
∫

dx fW(x, 0) e
it
h̄

−→MχW(x, 0) =
∫

dx fW(x, 0)χW (x, t). (17)

In order to find the generalized equations of motion for the Wigner function we must
obtain a scheme of motion in which the Wigner transformed operators are evaluated at the
initial time while the Wigner function evolves in time. To show how this can be achieved, let
us consider the integral∫

dx fW

dχW

dt
≡ i

h̄

∫
dx fW

[
HW e

ih̄
2
←−
∂i Bij

−→
∂j − HW e− ih̄

2
←−
∂i Bij

−→
∂j
]
χW

= i

h̄

∫
dx fW

[
HW e− ih̄

2
←−
∂i Bij

←−
∂j − HW e

ih̄
2
←−
∂i Bij

←−
∂j
]
χW

= i

h̄

∫
dx fW

[
e− ih̄

2 (
←−
∂j Bij

−→
∂i +(∂jBij )

−→
∂i )HW − e

ih̄
2 (

←−
∂j Bij

−→
∂i +(∂jBij )

−→
∂i )HW

]
χW

= − i

h̄

∫
dx fW

[
e

ih̄
2 (

←−
∂j Bij

−→
∂i +(∂jBij )

−→
∂i )HW − e− ih̄

2 (
←−
∂j Bij

−→
∂i +(∂jBij )

−→
∂i )HW

]
χW .

(18)

Note that in the above formula, ∂i acts only on HW (not on χW ) and ∂j acts on fW . This
defines an operator

−→M† = HW e
ih̄
2 (

←−
∂i Bij

−→
∂j +←−

∂i (∂jBij )) − HW e− ih̄
2 (

←−
∂i Bij

−→
∂j +←−

∂i (∂jBij )). (19)

The time derivative of the Wigner function under Nosè–Wigner dynamics is defined as

∂tfW = − i

h̄

−→M†
fW (20)

and the time-dependent function is

fW(t) = e− it
h̄

−→M†
fW(0). (21)

Equations (19) and (21) show that when ∂jBij �= 0 the generalized Wigner bracket defines a
non-unitary evolution. Note that we introduce such a generalization of the Moyal’s bracket
not in order to modify quantum mechanics but for devising novel computational schemes
which may be of interest to address open quantum systems dynamics. In fact, in the following
sections, we will show how to exploit the generalized Wigner bracket to introduce constant-
temperature dynamics in quantum phase space.

4. Nosè–Wigner equations of motions

It is known that constant-temperature Nosè–Hoover dynamics in classical phase space can be
introduced by means of the following extended Hamiltonian [19]:

H N
W = p2

2m
+

p2
η

2mη

+ V (r) + gkBT η, (22)

where (r, p) are the coordinates and momenta, respectively, of number N of relevant degrees
of freedom (m is the mass) while (η, pη) are the additional Nosè variables with their fictitious

4
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mass mη. The other constants appearing in equation (22) are the Boltzmann constant kB , the
external temperature T and g = N is a constant. The extended point in phase space may be
written as x = (r, η, p, pη).

The well-known Nosè equations of motion

ṙ = p

m
(23)

η̇ = pη

mη

(24)

ṗ = −∂V

∂r
− pη

mη

p (25)

ṗη = p2

m
− gkBT (26)

can be written in compact form [14]

ẋi = BN
ij

∂H N

∂xj

(27)

upon introducing the antisymmetric matrix

BN =

⎡
⎢⎢⎣

0 0 1 0
0 0 0 1

−1 0 0 −p

0 −1 p 0

⎤
⎥⎥⎦ . (28)

The Nosè–Liouville operator is then

iLN = Bij

∂H N

∂xi

∂

∂xi

(29)

= p

m

∂

∂r
+

pη

mη

∂

∂η
+

(
−∂V

∂r
− pη

mη

p

)
∂

∂p
+

(
p2

m
− gkBT

)
∂

∂pη

. (30)

The above equations allow one to define Nosè–Hoover dynamics in classical phase space. It is
worth noting that the coupling between the Nosè variables and the physical coordinates (r, p)

is not present in the extended Hamiltonian in equation (22). Such a coupling is achieved only
through the equations of motion (23)–(26), which, as can be seen from their compact form in
equation (27), are defined by means of the generalized antisymmetric matrix in equation (28).
The physical idea behind the Nosè–Hoover equations of motion is best understood by looking
at equation (25): this introduces a dynamical friction acting on the momenta of the physical
coordinates, which rescales them according to the unbalance between the internal kinetic
energy and the temperature of the external bath, as dictated by equation (26). From the point
of view of statistical mechanics, it can be rigorously proven that, when the dynamics is ergodic,
the calculation of phase space averages in the microcanonical ensemble of the extended system
(we recall here that the extended system is defined by the coordinates r, η, p, pη) of functions
of the (r, p) coordinates alone amounts to a canonical average in the ensemble at constant
temperature. For details of such a proof, we refer the reader to [14] and to the original
papers where the Nosè–Hoover dynamics was introduced for the first time [19] (in the present
paper, the steps of the proof are generalized in section 5 to a quantum-classical context so
that the statistical validity of Nosè–Hoover dynamics in Wigner phase space can be verified).

5



J. Phys. A: Math. Theor. 41 (2008) 355304 A Sergi and F Petruccione

Although the theory of the Nosè–Hoover dynamics has been described in a generalized non-
Hamiltonian form only recently [14], it has been known and used extensively for some time
in the field of molecular dynamics simulations and it is also described in textbooks [15, 16].
The method of Nosè–Hoover dynamics provides a numerical non-perturbative approach to the
calculation of statical and dynamical quantities of many-body systems at constant temperature.
No explicit approximation about the memory effects in the many-body system is taken (as
such the underlying philosophy of the approach is very different from that governing the use
of master equations): within the approach of molecular dynamics simulation in general, once
the interaction potential between the degrees of freedom of a many-body system is modeled,
brute force computer calculations are employed to study the effects of interest. From this
point of view, when applicable, the Nosè–Hoover equations of motion naturally provide a
non-Markovian formulation of the dynamics of a many-body system which could be used to
test other approximated approach to open system dynamics.

The matrix form of the generalized Wigner bracket can be used to generalize the Nosè–
Hoover equations of motion to the quantum case. To this end, one can define a quantum
extended Hamiltonian in phase space as

H N
W = H N. (31)

From the logical point of view, this amounts to consider first the quantum Hamiltonian
Ĥ = p̂2/2m + V (r̂), perform the Wigner transform in order to obtain the function HW =
p2/2m + V (r), and then augment the quantum phase space by the Nosè variables so as to
obtain H N

W . Therefore, we can use the matrix BN to define the quantum equations

∂fW

∂t
= − i

h̄

−→MN,†
fW

= − i

h̄
H N

W

[
e

ih̄
2 (

←−
∂i BN

ij

−→
∂j +←−

∂i (∂jBN
ij )) − e− ih̄

2 (
←−
∂i BN

ij

−→
∂j +←−

∂i (∂jBN
ij ))
]
fW

= 2

h̄
H N

W sin

[
h̄

2

(←−
∂i BN

ij

−→
∂j +

←−
∂i

(
∂jBN

ij

))]
fW

= HW
←−
∂i BN

ij

−→
∂j fW + H N

W

←−
∂i

(
∂jBN

ij

)
fW

+
∑

n=3,5,7,...

1

n!

(
ih̄

2

)n−1

H N
W

[←−
∂i BN

ij

−→
∂j +

←−
∂i

(
∂jBN

ij

)]n
fW . (32)

Defining the phase space compressibility as

κ = (∂jB
N
ji

)
∂iH

N
W, (33)

the Nosè–Wigner equations can be written as

∂tfW = −iLNfW − κfW

+
∑

n=3,5,7,...

1

n!

(
ih̄

2

)n−1

H N
W

[←−
∂i BN

ij

−→
∂j +

←−
∂i

(
∂jBN

ij

)]n
fW , (34)

where the Nosè–Liouville operator is defined as in equation (30) with H N
W replacing H N.

To zero order in h̄ the Nosè–Wigner equations of motion coincide with the classical
equations of motion. Higher powers of h̄ provide the quantum corrections to the dynamics.
Such quantum corrections can be found considering the term

H N
W

[←−
∂i BN

ij

−→
∂j +

←−
∂i

(
∂jBN

ij

)]n
fW . (35)

The general quantum correction term in equation (35) can be simplified. To this end, we note
that ∂BN/∂x1 = ∂BN/∂r = 0, ∂BN/∂x2 = ∂BN/∂η = 0, ∂BN/∂x4 = ∂BN/∂pη = 0, while

6
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the only nonzero terms are ∂BN
34

/
∂x3 = ∂BN

34

/
∂p = −1 and ∂BN

43

/
∂x3 = ∂BN

43

/
∂p = 1.

Therefore, one obtains

←−
∂ i

(
∂jBN

ij

) = ←−
∂ 4
(
∂3BN

43

) = ←−
∂

∂pη

. (36)

Collecting the above results, it is not difficult to verify that

←−
∂i BN

ij

−→
∂j =

←−
∂

∂r

−→
∂

∂p
+

←−
∂

∂η

−→
∂

∂pη

−
←−
∂

∂p

−→
∂

∂r
−

←−
∂

∂p
p

−→
∂

∂pη

−
←−
∂

∂pη

−→
∂

∂η
+

←−
∂

∂pη

p

−→
∂

∂p
. (37)

The quantum correction terms can then be written as∑
n=3,5,7,...

1

n!

(
ih̄

2

)n−1

HW

[←−
∂

∂r

−→
∂

∂p
+

←−
∂

∂η

−→
∂

∂pη

−
←−
∂

∂p

−→
∂

∂r

−
←−
∂

∂p
p

−→
∂

∂pη

−
←−
∂

∂pη

−→
∂

∂η
+

←−
∂

∂pη

p

−→
∂

∂p

]n
fw. (38)

The above expression can be simplified further by making the following considerations.
Recalling the form of the quantum Nosè Hamiltonian, one can note that all the mixed
derivatives of the form ∂2H N

W

/
∂xi∂xj = 0 when i �= j . Therefore, when evaluating the

nth power of the differential operator in the quantum correction terms, one can disregard the
cross products of such a type. Since, in the quantum correction n is odd and �3, it is not
difficult to see that another null term is

(
∂nH N

W

/
∂xn

i

)(
∂nfW

/
∂xn

j

) = 0. An important nonzero
term, containing spatial derivatives of the interaction potential, is given by

H N
W

←−
∂n

∂xn
i

−→
∂n

∂xn
j

fW = V (r)

←−
∂n

∂rn

−→
∂n

∂pn
fW . (39)

Other terms which are different from zero are

H N
W

[
−

←−
∂

∂p
p

−→
∂

∂pη

]n

fW �= 0, (40)

H N
W

(←−
∂

∂pη

p

−→
∂

∂p

)(
−

←−
∂

∂p
p

−→
∂

∂pη

)n−1

fW �= 0, (41)

H N
W

(←−
∂

∂pη

p

−→
∂

∂p

)2 (
−

←−
∂

∂p
p

−→
∂

∂pη

)n−2

fW �= 0, (42)

H N
W

(
−

←−
∂

∂p

−→
∂

∂r

)(
−

←−
∂

∂p
p

−→
∂

∂pη

)n−1

fW �= 0, (43)

H N
W

(
−

←−
∂

∂p
p

−→
∂

∂r

)2 (
−

←−
∂

∂p
p

−→
∂

∂pη

)n−2

fW �= 0. (44)

In summary, in order to obtain all the relevant quantum corrections to the Nosé dynamics
within the Wigner phase space picture, it is sufficient to evaluate the terms arising from the
expression∑
n=3,5,7,...

1

n!

(
ih̄

2

)n−1

HW

{←−
∂

n

∂rn

−→
∂

n

∂pn
+

[
−

←−
∂

∂p

(−→
∂

∂r
− p

−→
∂

∂pη

)
+

←−
∂

∂pη

(
−

−→
∂

∂η
+ p

−→
∂

∂p

)]n}
fW .

(45)

7
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5. Quantum-classical Nosè–Wigner dynamics

Equation (34) contains all the quantum corrections to the dynamics of the Nosè variables.
However, if one desires to perturb the dynamics of the physical variables (r, p) only slightly,
the value of fictitious mass mη of the Nosè variable (which is arbitrary and does not influence
the statistical properties) can be chosen to be of the same order of magnitude of the total mass
of the physical system: in such a way one effectively induces a time-scale separation between
the dynamics of the thermostat (whose only role is that of enforcing the desired canonical
ensemble statistics) and the dynamics of (r, p), which one is really interested in. Taking such
a choice, one realizes that a small expansion parameter

µ =
√

m

mη

� 1, (46)

where m is the mass of the physical degrees of freedom, appears in the formalism. From a
physical point of view, this can be interpreted by saying that, at a given temperature, different
from zero, the De Broglie wavelength associated with the Nosè variable would be much
shorter than that associated with the physical variables. In such a case, it is satisfactory to
adopt a quantum-classical approximation [18] so that the quantum corrections are considered
only for the physical variables (r, p): this amounts to taking an average over the short
De Broglie wavelength associated with the Nosè variable. Such a quantum-classical limit can
be performed along the lines adopted in [20], which require that a small expansion parameter
µ, given in the present case by equation (46), must be identified. In this limit, equation (34)
is replaced by

∂tfW = − (iLN + κ) fW +
∑

n=3,5,7,...

1

n!

(
ih̄

2

)n−1

V (
←−
∂ r

−→
∂p )nfW . (47)

The equilibrium quantum-classical statistical mechanics arising from the above equation
can be defined upon finding the stationary solution, fW,e, of equation (47). Such a stationary
solution, which is defined by ∂tfW,e = 0, can be written as an expansion in even powers of h̄

fW,e ≈
∑
n=0

h̄2nf
(2n)
W,e . (48)

From equation (47), one can see that the quantum corrections start from second order in h̄.
The order zero, purely classical, solution f

(0)
W,e is defined by the equation

(iLN + κ) f
(0)
W,e = 0. (49)

Using the theory of classical non-Hamiltonian systems [14], one can immediately write down
the form of f

(0)
W,e as

f
(0)
W,e = δ

(
H N

W

)
e−w, (50)

where dw/dt = κ . The stationarity of f
(0)
W,e can be easily verified considering iLNf

(0)
W,e =

−κf
(0)
W,e, where one has used the fact that iLN conserves the Nosè Hamiltonian so that

iLNδ
(
H N

W

) = 0. For the case of Nosè dynamics one obtains

f
(0)
W,e = δ

(
H N

W

)
e−gη. (51)

In order to calculate averages, the function f
(0)
W,e is to appear inside phase space integrals

over dr dp dpη dη. The further analysis of the phase space measure can be performed upon
considering the identity

δ(f (η)) =
∑
η0

δ(η − η0)
df

dη

∣∣
η=η0

, (52)

8
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where η0 are the zeros of f (η). In the present case, one has

η0 = −β

g

(
p2

2m
+ V (r) +

p2
η

2mη

)
. (53)

δ
(
H N

W

) = β

g
δ

(
η +

β

N

(
p2

2m
+ V (r) +

p2
η

2mη

))
. (54)

Therefore, the stationary solution has the form

f
(0)
W,e ∝ δ

(
η +

β

N

(
p2

2m
+ V (r) +

p2
η

2mη

))
e−gη. (55)

Typically, one is interested in the calculation of averages of functions of (r, p). In such a case,
the integration over η gives

f
(0)
W,e(r, p, pη) ∝ exp

[
−β

(
p2

2m
+ V (r) +

p2
η

2mη

)]
. (56)

Since the Gaussian integration over pη can be easily performed, one finally obtains

f
(0)
W,e(r, p) ∝ exp

[
−β

(
p2

2m
+ V (r)

)]
. (57)

Equation (57) shows that, whenever one calculates averages of functions of the physical
variables (r, p) alone, the stationary solution to equation (47) up to order zero in h̄ has the
desired canonical form.

Quantum corrections to the stationary order zero solution can be systematically obtained
by considering the higher order terms in equation (47). In the present quantum-classical
case, they turn out to be identical to those originally found by Wigner [9]. For example, the
second-order correction is given by

(iLN + κ) f
(2)
W,e(x) = − h̄2

223!
V

(←−
∂

∂r
·
−→
∂

∂p

)3

f
(0)
W,e(x). (58)

Assuming that the analytical form of the potential V (r) is known, the right-hand-side
of equation (58) can be calculated exactly since the order zero solution is a Boltzmann
exponential.

Physical properties of the quantum subsystem, coupled to the classical Nosè bath, will
be represented by averages of functions of (r, p). In such a case, an average over (η, pη)

can be performed without loosing information over the quantum subsystem. Therefore, one
does not need to consider in the stationary equation the full quantum correction term given
in equation (45) but it will suffice to consider its average over (η, pη). When averaging
equation (45), the linear terms in pη give a zero contribution, since they are averaged over a
Gaussian weight exp

[−βp2
η

/
2mη

]
. Hence, within Nosè–Hoover quantum classical dynamics,

one has to consider the following stationary equation:

(iLN + κ) fW,e(x) =
∑

n=3,5,7,...

1

n!

(
ih̄

2

)n−1

H N
W(

←−
∂ r

−→
∂ p)nfW,e(x). (59)

In the case of the second-order correction, one is left with(
p

m
∂r − (∂rV )∂p

)
f

(2)
W,e(r, p) = − h̄2

24
V (r)(

←−
∂ r

−→
∂ p)3f

(0)
W,e(r, p), (60)

9
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where f
(0)
W,e(r, p) is the Boltzmann exponential defined in equation (57). Equation (60) was

solved by Wigner in his original paper [9]. The solution is

f
(2)
W,e(r, p) = f

(0)
W,e(r, p)

[
− h̄2

24

∂2V (r)

∂r2

[
3
β2

m
+ β3 p2

m2

]
− h̄2

24

β3

m

(
∂V (r)

∂r

)2
]

. (61)

We give details of the derivations in appendix A. The above discussion, together with the
analysis in [9], proves that, for all practical purposes, a stationary solution to the Nosè–Wigner
dynamics exists because it can be constructed term by term, for the even powers of h̄.

A computational scheme to calculate quantum averages in the canonical ensemble can
then be based upon sampling the initial conditions from the canonical stationary Wigner
function, propagating trajectories undergoing thermal fluctuations by means of the Nosè–
Wigner dynamics, and finally averaging over quantum phase space. This scheme is different
from those previously suggested in the literature [6, 7]. In particular, in [7] Nosè dynamics
for coherent states is introduced as a means for calculating quantum averages as time averages
which requires a suitable modification of the quantum Hamiltonian. Instead, in our work the
dynamics arises from a generalization of the Moyal bracket while the physical part of the
Hamiltonian remains unchanged. Quantum averages must be calculated by sampling initial
conditions from the proper Wigner distribution and propagating observables according to the
Nosè–Wigner dynamics in order to obtain the stationary state. We also note that a practical
scheme to sample initial conditions from the Wigner function, which is not based on the
expansion in powers of h̄, has been recently proposed in [21]. Moreover, we surmise that
the computational application of the Nosè–Wigner dynamics is also interesting in the case of
quantum systems out of equilibrium. In this latter case, the Nosè dynamics can be used to
simulate the coupling of the relevant quantum system to a thermal bath and describe quantum
relaxation processes. We provide a numerical example in the following section.

6. Numerical example: cooling of phonons

In view of the raising interest in the dynamics of cool gases in optical lattices, we will consider
the related problem of the cooling of phonons. To this end, let us consider a model system
comprises N = 20 non-interacting harmonic oscillators in one spatial dimension. Let

HW =
N∑

j=1

(
p2

j

2
+

1

2
ω2

j r
2
j

)
(62)

be the Wigner transform quantum Hamiltonian of the model system. The numerical values of
the oscillator frequencies are chosen according to

ωj = −log(1 − jω0), (63)

where ω0 = N−1(1 − e−ωmax). For the system defined by the Hamiltonian in equation (62) the
quantum Wigner dynamics is exactly equal to classical dynamics, i.e., the quantum corrections
in the Wigner equation are identically zero because the potential is harmonic. All the quantum
effects are described by the initial Wigner function, which, for the model, is known analytically
and it is given by

fW,e(0) =
N∏

i=1

tanh
(

βωi

2

)
π

exp

[
−2 tanh

(
βωi

2

)
HW

]
, (64)

where β = (kBT )−1, i.e., the Boltzmann constant kB times the temperature of the ensemble.
At equilibrium, quantum averages can be calculated by sampling initial phase space point

10
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Figure 1. Average values of the quantum Nosè–Hoover chain Hamiltonian HNHC
W , defined in

equation (65), (black circles) and the physical Hamiltonian HW , defined in equation (62), (black
triangles) versus time. The dynamics numerically conserves the average 〈HNHC

W 〉 while the decrease
in time of 〈HW 〉 provides a clear signature of the cooling.

from fW,e, propagating classical trajectories according to the quantum harmonic Hamiltonian
(62), and averaging over phase space.

The process of cooling is a non-equilibrium phenomenon. Here, we want to simulate it
by coupling the system, which is initially at equilibrium at temperature (kBβ)−1, to a heat bath
characterized by β1 > β. This can be achieved by sampling initial conditions from the Wigner
distribution in equation (64) and propagating phase space points according to a constant-
temperature dynamics defined in terms of β1. In practice we have considered β = 0.01
and β1 = 1. In order to deal with ergodicity problems in quantum phase space, we adopt a
Nosè–Hoover chain [22]. The Nosè–Hoover chain method is a more sophisticated approach
in order to control the temperature of a system. It is based on the same dynamical idea of the
standard Nosè–Hoover thermostat, but it exploits a series of thermostat variables which are
coupled as in a chain in order to control the fluctuations of the previous member of the chain.
In such a way, it has been shown numerically [22] that ergodicity can also be achieved in stiff
dynamical systems, such as harmonic oscillators, where the simpler Nosè–Hoover thermostat
fails. In the following, we will adopt a minimal chain composed of just two thermostats.
Therefore, we introduce a quantum extended Hamiltonian in phase space

H NHC
W = HW +

p2
η1

2mη1

+
p2

η2

2mη2

+
Nη1

β1
+

η2

β2
(65)

with the thermostat variables
(
η1, pη1 , η2, pη2

)
and inertial parameters

(
mη1 ,mη2

)
. In order

to define a quantum Wigner Nosè–Hoover dynamics the generalized Moyal bracket must be
defined in terms of the antisymmetric matrix

BNHC =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−1 0 0 0 −p 0
0 −1 0 p 0 −pη1

0 0 −1 0 pη1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (66)

As in the case of the Nosè–Hoover thermostat, the coupling between the extended degrees
of freedom is realized by means of the antisymmetric matrix BNHC, which enters into the

11
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definition of the equations of motion [14]. Therefore, if one samples initial phase space
points from fW,e(β) and propagates the dynamics defined by the Hamiltonian H NHC

W (β1),
non-equilibrium quantum averages can be numerically calculated. Figure 1 shows the time
dependence of the average value of the model Hamiltonian HW under the quantum Nosè–
Hoover chain dynamics. For comparison, the figure also shows the average value of the
conserved quantity H NHC

W . The rate of dissipation for HW is controlled by the numerical
values of mη1 and mη2 , which were set equal to 100 and 10, respectively.

7. Conclusions

We have generalized the Moyal bracket exploiting its underlying antisymmetric matrix
structure. This naturally introduces a non-unitary evolution in quantum phase space whose
implications may be of interest for open system dynamics. The generalized Moyal bracket can
be used in order to introduce Nosè Wigner dynamics in phase space. Upon taking a quantum-
classical approximation, according to which the system of interest retains its full quantum
nature while the Nosè variables are treated classically, we have shown how to construct
stationary solutions of the Wigner function under Nosè–Wigner dynamics. We surmise that
Nosè–Wigner evolution is of particular interest for non-equilibrium dynamics. To this end,
we have shown how such a dynamics can be used to simulate the non-equilibrium cooling of
a quantum boson gas. This suggests a novel route to tackle the simulation of non-equilibrium
processes in quantum gases in optical lattices. Further numerical studies are ongoing.
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Appendix. Second-order correction to the stationary quantum-classical
Nosè–Wigner function

To show how equation (60) can be solved, we consider a one-dimensional system and write

f
(2)
W,e(r, p) = f

(0)
W,e(r, p)g

(2)
W,e(r, p). (A.1)

Equation (60) becomes

f
(0)
W,e

(
p

m
∂r − (∂rV )∂p

)
g

(2)
W,e = − h̄2

24
V (r)(

←−
∂ r

−→
∂ p)3f

(0)
W,e, (A.2)

where we have used

((p/m)∂r − (∂rV )∂p)f
(0)
W,e = 0. (A.3)

We can also write

f
(0)
W,e

(
p

m
∂r − (∂rV )∂p

)
g

(2)
W,e = − h̄2

24

∂3V (r)

∂r3

∂3f
(0)
W,e

∂p3
,

f
(0)
W,e

(
p

m

∂g
(2)
W,e

∂r
− ∂V

∂r

∂g
(2)
W,e

∂p

)
= − h̄2

24

∂3V (r)

∂r3

∂3f
(0)
W,e

∂p3
.

(A.4)

12
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Considering

∂f
(0)
W,e

∂p
= −β

p

m
f

(0)
W,e,

∂2f
(0)
W,e

∂p2
= − β

m
f

(0)
W,e +
(
β

p

m

)2
f

(0)
W,e,

∂3f
(0)
W,e

∂p3
= +3

(
β

m

)2

pf
(0)
W,e +
(
β

p

m

)3
f

(0)
W,e,

(A.5)

Equation (A.2) becomes

p

m

∂g
(2)
W,e

∂r
− ∂V

∂r

∂g
(2)
W,e

∂p
= − h̄2

24

∂3V (r)

∂r3

[
3

(
β

m

)2

p +
(
β

p

m

)3
]

(A.6)

= − h̄2

24

p

m

∂3V (r)

∂r3

[
3
β2

m
+ β3 p2

m2

]
. (A.7)

It is easy to see that upon defining

g
(2)′
W,e = − h̄2

24

∂2V (r)

∂r2

[
3
β2

m
+ β3 p2

m2

]
. (A.8)

The second right-hand-side of equation (A.2) will be exactly cancelled by the first term in the
Liouville operator in the left-hand-side. Noting that

−∂V

∂r

∂g
(2)′
W,e

∂p
= h̄2

24

β3

m

p

m

∂

∂r

(
∂V (r)

∂r

)2

(A.9)

one gets

g
(2)
W,e = g

(2)′
W,e − h̄2

24

β3

m

(
∂V (r)

∂r

)2

. (A.10)

Finally, the second-order correction to the stationary equation can be written as

g
(2)
W,e = − h̄2

24

∂2V (r)

∂r2

[
3
β2

m
+ β3 p2

m2

]
− h̄2

24

β3

m

(
∂V (r)

∂r

)2

. (A.11)

Higher order terms can be found in an analogous manner.
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[19] Nosè S 1984 Mol. Phys. 52 255

Hoover W G 1985 Phys. Rev. A 31 1695
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